skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeong, Miji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the discovery of a new subclass of carbon-enhanced metal-poor (CEMP) stars, characterized by high absolute carbon abundances (A(C) > 7.39) and extremely low metallicity ([Fe/H] ≤ –3.1) but notably lacking enhancements in neutron-capture elements, thus falling under the CEMP-no category. This population emerged from a detailed analysis of low-resolution spectroscopic data obtained from the Sloan Digital Sky Survey and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, where the observed frequency trends with the decreasing metallicity of CEMP-s(s-process-enhanced) and CEMP-no (no neutron-capture enhanced) stars deviated from established expectations. In contrast to earlier findings, we observe a rise in high-A(C) stars below [Fe/H] = −3.1, which we interpret as a distinct group not accounted for in traditional CEMP classifications. Following the Yoon–Beers group classification, we define these stars as Group IV. Statistical modeling confirms their presence as a separate peak in theA(C) distribution, and available radial velocity data suggest that about 30% of Group IV stars may be binaries, indicating possible binary-related formation mechanisms. This discovery challenges the current CEMP-no star formation pathways and implies the existence of alternative or hybrid enrichment scenarios in the early Universe. High-resolution spectroscopic follow-up of Group IV candidates will be crucial for identifying their progenitors and understanding their evolutionary implications. 
    more » « less
    Free, publicly-accessible full text available September 25, 2026
  2. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less